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1. Introduction:

Group theorctical techniques are of the greatest importance in the
applications of unitary symmetry in quantum physics. and--in one form or
another--the typical problem involves the construction of the unit tensor
operators (ligner operators) for the relevant group. For the groups {U(n)}

the construction of unirreps (unitary irreducible representations) is

known from the work of Gel'fand among othersJZ)(%%m construction of unit
tensor operators is equivalent to the explicit construction of the unitary
matrix which brings the general Kronecker product to diagonal form. As

1s well-known the occurence of multiplicity introduces ambiguity into this
reduction. The resolution of this multiplicity problem may be looked upon
as the problem of finding a suitable analog for tensor operators in U(n),
to the Heyl branching law for umirreps in U{n), since it s this branching

law which validates the cannnica]"1

resolution of the labelling problem
for vectors of an irrep by means of the Gel'fand pattern.

For U(3) such a canonical resolution is known!4)Unit tensor operators
are canunically labelled by three arrays: a) the irrep carried by the
operatcr is labelled by lM13,M23,M33] (which specifies the Young frame)

b) the specific vector in the irrep is labelled by a Gel'fand pattern
(M12 MIIMZZ) and c) the specific operator in the multiplicity sei is labelled

r
by an operator patiern, (r12 11rlz) vthose weights specify the shifts

Ai(r)=Mi21"a]-Mi;"1t1a] induced by the operator when acting on‘an ivrrep

Im) in U(3).

The significance of the operator patterns (r) in cffecting the resolution
can best be seen from the normal form for unit tensor oparators(iore
particularly, for the projective matrix elements, (sce cquation{11) below) One

sees that this normal form associates a unique operator to cach lexical
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operator pattcrn and effects a mapping: <[(:'“)>~ Dz(l(";])) of the canonical
operatoriqui;>to a function (invariant under the group action) which vanishes
on all irreps of the characteristic null space. #2
It is conjectured that these features of the known U 3) resolution

generalize to ¢11 U(n). The purpose of the present paner is to shcw that
this conjecture is valid for all U(n) for all operators characterized by
maximal null space. An explicit cancnical construction of the denominator
function D({SSR) which characterizes all such operators is given in Section

111 (see equation (18)). Knowledge of this denominator function suffices

to determine the operators themselves (confer Section Iii, remark (7) ).
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I1. Technical Preliminaries

A. The Imbedding U(n?) D U(n) x U(n) O Y(n)

We will use the tachniques of boson operators (Heiscnberg group).
The basic underlying idea is the Jordan map: given a set of nxn matrices
{%} over R, define the mapping:

J: j) +A0p -|EJ ’Aij a'laj)' (1)

where the {ai}.{i}} for i=1,...,n are boso. operators obeying the defining
relations:

[ai.aj ] = la!'a ] =0; [ai,aj ] = I iel,2,...50 (2)
The mapping & has the property that it preserves commutation relations:

(1) ,(2)y _ (1) ,(2)

[Agps figp ) = LAT5LATT] o (3)

We can extend this concept by considering 1n place of the n component
boson the nxn boson operator a;. or mairix boson operator A =(a;). These

n2 operators obey:

LIS BRI T~ I~ R =i 4 _ '3
Two different Jordan maps are now defined:
n
= : _ . k-k
= . - = J ’
Jp = Jupp‘n. (A)—(A ) +J (A) k£1 A, akak . (5b)

Both maps preserve comutation relations. Note that a1 J, (4) cowmte
with all Jp(A). Hence if the {A} are the generators of a fundamental irrep
of U(n), the extended Jordan map ylelds generators of the group U(n)xU(n).
Letting (A) inciude the nzxn2 matrices of a fundamental irrep of U(nz) we
obtain generators for all totally symmetric irreps of U(nz) adaptad to the
group decomposition: U(nz) D U(n) x U(n).
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Let us now deteymine more explicitly the irreps dofined by this procedure.
Using the elements of the matrix boson A as indeterminates, we consider

homogeneous polynomials as the basis. These are the boson poZynomiaZs,(3)
denoted by:
(m')
B([ml (A) ’
(m)
where A is the matrix boson (a;). and [m] denotes the Young pattern labels
[mln‘mZn""'mnn] with (m) and (m') being Gel'fand patterns of n-1 rows.
The operators J(i)act on the boson polynomials by commutation; by construction
the boson polynomials are the vectors denoted by the respective Gel'fand
patterns of the group.
Exzple: If the Gel'fand patterns (m) and (m') are maximal then
(wax) n T M e
Bl [ (A = & (a].?....lz kn o tln
((uax)) kel 12,12 ' (6)

) 1...k
vthere LI

is the determinant formed froin the k bosons a;. 1,i<k.

(1) By construction the boson polynomials obey the product Taw:

R () (a) (")
B ([m] ) (Xay) = z B ([m]) (N5 ([n] ) () /[;J ) i) (7)
(1) Ga) (') (=) (m) (n')

(Here the tilde denotes matrix transposition.)
(2) The bosen variables A appearing in B(A) are indeterminates. If we

specialize A+U with U an nxn unitary matrix we see (from the product law)

that the B([m] )(U) are finite dimensional unitary matrix represehtations

of U(n). (That they aefine irreps labelled by [m] follows from the acticn

of the operators J(A).) We are, however, free to interpret the indeter-
minates A as elements of an arbitrary non-singular comglex matrix. Just

as in remark (1) we can conclude that thesc same polie.~miuls ave matria irpcps

of GL(n,C).



B. The factorization lemma:

He have seen that this matrix boson realization involves the direct
product group U(n)xU(n ). One sees in fact that this buson realization
really involves the group U(nz) and all totally symmetric irreps thereof.
This defines an imbedding of U(n) in the sequence of groups
U(nz) D U(n) x U(n) D U(n), in which, moreover, the irrep labels of the
two U(n) groups in U(n)xU(n} coincide [we denote this by U(n)*U(n)].

This structure is the analog to that exhibited by the tensor operators of

U(n), and we exploit this formal analogy to discuss the factorization 1emma.‘4)

Let (M') j:>
[H]
(M)

denote a normalized basis vector in an irrep space of U(n)*U(n). In this

notation, the first U(n) refers to the U(n) group with generators Ju(A),
the second to the U(n) group with genarators Jh(A). These two U(n) groups
are isomorphic but distinct (and cpmmuting); the placement of the indices is
merely a reminder as to which group s which ("upper" vs. "lower") - there
is no other inplication.

The star signifies that the Casimir invariants of the irreps of these
two groups conicide. Hance, both

() = (E)]) and (') w (f::']))

are Gel'fand patterns, the second one baing inverted. The basis vectors may

also be written in the form

(1) g [8D 10> [ )
(x] = M( (M) ° B (] (M)} * vhere nf [M) ] (A)
an () (N

is an operator-valued polynomial on the set of boson operators A={a; }. the
symbol |0- denotes the vacuum ket, and r:([M]) is a function defined on

the highest weight tableau associated with the irrep [} :
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<j=

) . o ,
M([M) = ( ifl (Hini-n-i)!) < (1 | , (Min-l-ijnd-i)) (8)

The introduction of W defines the manner in which the basis vectors
are normalized.

The boson bolynomials are clearly tengor operators with respect to
transformations in the respective U(n) subgroups of U(n)*U(n), denoted by
the lower or upper Gel'fand pattern. As such, this operator relation must
be bilinéar in the canonical Wigner operators which are defined, respectively,
on the two U(n) groups. The factorization lemma asserts that the precise form

of this bilincar relaticn ia:

¥ (r) (r _
B (E:-:])) (A) = W ox <[H]> -[il:'l> Tt . .
¢n (1) \Gn/, 1)/, (9)

where & is an invariant operator of U(n)*U(n) which has eigen-value

(cf.eq.(8)) equal to # ([M]) for an arbitrary vector with labels [M]. The

indices £ and u designate the fact that the Wigner operators act, respectively,

on the lower and upper Gel'fand patterns of an arbitrary vector of U(n)*U(n).

(Note that the two Wigner operators commute since they act in different spac‘s.)
Remariig:

(1) There is an impurtant special case of equation (9):

. T T o \ "1‘
sy o 6]> <1 o> ! .
A %1 . (1!-;1 <- i 2 j u, (10)

where the [10] denote the (unique) fundamental Wigner operators. It is
this special case that accounts for the term "boson factorization".

(2) The result in equation (9) is important not only in affording a method
to calculate Wigner operators but also in showing that, at this stage, all

resolutions of the multiplicity are equivalent (since an arbitrary orthogonal
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transformation leaves the (r) sum invariant.)

(3) When we use the factorization iemma below we will take the labels

(r) to be the canonical labelling defined by null space.

C. Projective Operators

To simplify the discussion of the unit tensor operators in U(n) it
is useful to employ recursive methods and consider that all U(n-1) operators
are known. %)
- (M) .
We can them consider projective operators, |(i')| » which are

scalar products in U(n-1) of unit tensor operators z(if) in
1
U(n) and (r") in U(n-1). §
[l 5

Note that both patterns(r) and (r') in a projective operator are
operator patterns.

It is a remarkable fact that the explicit matrix elements of all
extromal 3 init U(n):U(n-1) projective operators can be calculated from
a few cimple rules of the pattern ca1cu1us.(5) In particular, this class of
explicitly known projective operators inciudes all elementary operators of
the furm [iké n—k] (a dot over a numeral implies that the numeral is repeated
a nuiver of times equal to the subscript), which themselves are a product basis
far wmgroueting alll(n) *crcor operators.

l'le can now give a standard form for projcctive operators:

l'm

(1 NPCF . Polynomial, (11)

(r') Deno?(fﬁ?). Denom _, (')

vhere:
(1) The polynomial is over the variables p =m +n=-1-1 of the
1 ’n-l i |n-1
U(n-1) subgroup with the variables p; . of the U(n) group as parameters.
?

(The leading term is normed to 1.)
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(2) The KPCF (Nuwerator pattern calculus factor) is an explicitly
known square root of a product of linear factors in {(p; '} and (Pi.n:i}.

(3) ULenom n_l(r') is a (recursively) known function of the {pi.n-ll

and defined on the U(n-1) subgroup.
(4) The denominator function Denom ({;{) is a function of the ipy n}
9

alone, which is invariant under U(n) and totally symmetric under the 5(n)

symmetry group permuting the {p1 n} variables.
»
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I11. Determination of the Denominator Function for Operators having Max.mal
liull Space

We begin by recalling the form of the factorization lemma, eq. (9),
which asserted that the general boson polynomial could be viewed as a
tensor operator in U(n) x U(n):

M (r) (r)
B ([HJ) (A) = Tl <[~s] <\|J Tl , (12)
4] (r) \( 'Y/

Next we use the general form for the naximal boson polynomials ex-
pressed as a Cartan product of elementary operators:

(nax) n
B([HJ) () = 1 (a)2 K kn Netn (13)
(max) I:-l 12 nnk ’

Finally we use the fact that the matrix elements of all elementary
operators are all explicitly known from the pattern calculus a]gorithm€5)
We use this information *n the form: .

a2kl o3 b I <L, Yo 3oy (14)
%12,..x% k . Up- o ,>>. .

Yk nax -
We introduce this form for each of the e]ementary operatbrs appearing in

equation (13) abcve, and then equate the RHS of equation (12) to this result.
Before writing out the resultant equation, we sin: .fy it by making a
few observations:

(a) The orerator ! canccis out on both sides and may be eliminated

(b) The boson operators :r equation (13) all comnute, hence we can

take 2’1 possible orders and divide by the multinomial factor:
n

4 e S =\ - . ]5
| f(.£.) Hi“!/iﬂl(di“ M) (15)
He_find: v Y. -
) ) 1 k, . k
Loe[M)> <[l —(_"‘1-'-) Lw (<[1 (.)n--k]:' <[]k on-'r:])L (16)
T rax = max max. u nax .

where I denotes a product of elerentary operators, with the sum over
all possible orders with all possible shifts.

To simplify the problem we convert both sides hv equation (16) into
projection operators by taking the scalar product with the unique
maxiral U(n-1) operator of maximal shift. Since for these operators
the patterns simply 2dd, we may use the appropriate product decomposition
on the RHS.
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We thus obtain, Y . Tk .
[.I.ﬂ [\IJ T(;.\_I_— rn (ll on-k] L, o ,1) @17
Rax

2ax " max 2

He now come to the essential 1dea: to detormire the null space of
a unit tensor operator ix need only the denominitor function for that
operztor. loreover this denominator function i< dependent solely on the
U(n) invariant labels [M].

Next we recognize that Equation (17) taken between fixed initial
and final states is an algebraic identity valid for arbitrary values of the
indeterminates.

Accordingly, we will consider Equation (17) to be taken betweer. fixed
initial and final irrep labels and apply the patterr calculus rules.

He sketch the derivation now by a series of comments:

(1) Since the U(n-1) operator has maximal shift there is but
one way to write the required shift in each elementary operator (U(n-1) part).
By contrast, the shift in U(n)--since a general shift--has many ways
of being written.

(2) We now let P, 1,n-1 become large and positive for each
elcnientary operator on the RHS. (We take Pr=1,n-1 in both upper and lower
irveps to be.1arge.) Nowr observe that for cach clamentary operator
the limit is independent of the shift Vg (Recall that the U(n-1) shift
is fixed.)

(3) We repeat the limiting operation for each of the p,
in turn, keeping the overall powers of these variables.

(4) Since we perform the 1imits in both the upper and Tower patterns
all phases are positive.

(5) The net result is that all numerator pattern calculus factors
and U(n-1) pattern calculus denominators become independent of the shifts
in U(n), and indcpendent of where they appear in the product.

(6) Clearly the RHS approaches a single result, i.e., the space
of operator patterns in U(n) becomas 1-dimensional.

(7) From (6) it follows that the LUS is restricted to a single tarm.
We idontify this term as the pattern I of greatest null space. (This
identification requives proof, see remark (2) below.)

1
i.n-1 variables
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{(8) A1l limiting factors cancel on both sides leaving only the
‘denominator functions in U(n). '

“The ret result of these observations is to validate the f0110ﬂ1ng
. form for the denominator funciion for the general unit tensor operator
-'Hi?’iﬁfu(n) having maximal null s;ace (denoted by the "stretched"
: _operétor pattern rs). cf. remark (4)_bg10w7)

Path sum formula:

[

. , ’ T 2] .
C (rs) ([mln) |=2 - k I_I D(lk.lon_k) (lh'lln) (18)

(M " paths | \ elementary
B - {Y4§} operators
waere: -

(a) the product denotes a product of squares of elementary. denominator
operators in any order subject to the ccnstraint that precisely Mk n L 1.n
operators be of type [1k6n k] for every I (k = 1,2, . . . n), where
the M. are the Young frame labels of t'ie tensor operotor [M] (and M

n+1u150);

{b) the product I_I acts on the irrep labels [m]n of the state

vector in U(n);

(c) the :E:: over all paths denotes a sum over all sequences of
operator pattern labels {71] of the denominator operators subject to the
constraint that the shifts A(y;) induced by the cperators obey the rule:

- .
>],.; My;) = alrg), . (19)

that is, the total shift induced by the product agrees with the shift asso-
ciated with the tensor operator .

()

(1) For sinplicity a purely numerical normalizing factor has
been omitted in the path sum formula.

ke
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{2) To validate that this result corresponds to maximal null space
one observes that the path sum formula has precisely those linear
factors in ‘the denominator (poles) corresponding to the set of lines
‘in the intertwining number-null space diagrar.6 for the oparator
with largest null space.

(3) The path sum formula agress with all previously determined
special cases of the stretched denominator function.In particular,
it agrees with all U(2) denominator functions, with all stretched U(3)
denominator functions£7)and with a1l stretched U(n) denominator

functions for the adjoint-type operatr.'.v-s.8

(4) Stretched patterns in U(3) have the difference P12~F22
as large as possible, consistent withA (T) fixed. "Stretching"
in U(n) is less geometrically obvious and corresponds to having the
largest dimension of the irrep denoted by [r), . . .T k] for
eachk=1,2, .. . n-1, consistent with the constraints of
lexicality and 4(T) fixed. It can be shown that this opcrator patterin--
denotes by (rs)--is unique.

(5) The denominator function determined by tha path sum
formula has the general form:

-2 olynomial
[denom. fen.] B?B%UE%‘E? Tincar factors

The polynomials dztermined in this way constitute a new family of
special functions with remarkable properties, currently under investi-
gationsg) These polynomials are invariant under the original U(n) group
(as 1s obvious) and are totally symrotric under the S(n) group permuting
the variables {pin] . In barycentric n-space, the polynomials are
positive in the lexical region and characterized (in the lexical region)
by a simplex of zeroes.

(6) It is remarkable that the oper:tur({rs) tself is determined

)
Ly knowledge of the denominator function. This corresponds to the

fact that boundary Racah functions (those relating to maximal final irreps)
are moromials determined by the corresponding (known) denominator
functions. Hence Racah -coupling of the sequence of elementary operators in
the Cartan product suffices.



(7) As a concluding remark, let us observe that knowledge (in
principle) of the maximal null space operator allows us to
renove this operator from the sum over T patterns in equation (18).
In principle, therefore we are in a position to iterate the process
that led to determining the (I's) operator, thereby determining the next
" operator in the sequence, etc. This iteration process--though basically
correct and feasible--is not yet fully understood and no claim can
be made, as yet, to having completely resolved the gencral multiplicity
problem.
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FOOTROTES

# 1. Canonical here means no free choice to within equivalence
-under the Weyl group.

# 2. The characteristic null space consists of complete irreps; this
distinction eliminates from consideration accidental vanishings on
particular vectors (which are basis dependent) and known to occur.

#3. An extremal Cel'fand pattern is one in which the weights are a
permutation of the irrep labels [m].
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